

Overview of World Birth Defect Day

Prof Dr Gehanath Baral Department of Obstetrics and Gynecology

2022 World Birth Defects Day Partners : 2022

|--|

2022 World Birth Defects Day Partners : 2021

28	South East Asia	Nepal	B and C Medical College Teaching Hospital	Gehanafh Baral	baraldr@gmail.com

Certificate of Recognition

In Recognition of your Significant Contributions in Marking the *World Birth Defects Day 2019,* the World Birth Defects Day Steering Workgroup awards

Paropakar Maternity and Women's Hospital

the status of

Platinum Partner

Neonate/Infant/Child Mortality trend

Limited public health intervention

Expanded public health intervention

Key facts on Birth defects

- -6% (8 million) born globally each year
- -Leading causes of death in infants and young children
- -Types: Structural and Non-structural
- -50% of structural cannot be linked to a specific cause
- Known causes or risk factors
 - Non-genetic: can be mitigated or removed before conception or early pregnancy to prevent some birth defects
 - insufficient folate status, poorly managed diabetes, obesity, lack of protection against infectious diseases, some teratogenic medications, smoking, alcohol, and other risk factors.

WBDD

• The first WBDD: 2015

• Aim to provide one global voice and a platform to all organizations and institutions engaged in birth defects related surveillance, research, prevention and care activities.

• First four years (2015-2018)

• Raising awareness about the importance of birth defects.

• Five-years vision: 2019-2023

- 130 organizations formally joined
- To accelerate coordinated efforts to enable organizations and institutions

THE WBDD VISION (2019-2023)

- 1. Reduce the occurrence of birth defects for which there are proven prevention strategies,
- 2. Improve quality of life of all individuals and families affected by birth defects,
- **3.** Advance knowledge on epidemiology of birth defects by initiating new monitoring and research programs and strengthening the existing ones to better understand how birth defects impact children, families and communities,
- Secure financial and public support for prevention efforts and for research to find causes of birth defects and identify best practices for treatment and care of children with birth defects,
- 5. Develop training courses and/or disseminate the existing ones.

Five-years goal: 2019-2023

Reduce the Risk of Birth Defects

- 1. Folic acid 400 μ g/day
- 2. Consult before stopping or starting any medicine
- 3. Vaccines: <u>flu shot</u> and <u>whooping cough</u> <u>vaccine</u> (Tdap) during each pregnancy
- 4. Pre-pregnancy <u>body mass index</u> [BMI]: ≤30
- 5. Avoid during pregnancy: Smoking, Alcohol, tobacco, and other drugs

Teratogens

Infections

- <u>Toxoplasmosis</u> (an infection that spreads through cat feces)
- Other infections like <u>group B</u> <u>streptococcus</u>, <u>listeria</u>, <u>candida</u> and <u>s</u> <u>exually transmitted infections</u> (STIs)
- <u>Rubella</u>
- Cytomegalovirus (CMV)
- Herpes simplex virus
- Syphilis

Medications

- Antiepileptic drugs (AEDs)
- Antimicrobials
- <u>Anticoagulants</u> (blood thinners)
- Antithyroid medications
- <u>Vitamin A</u> (a common ingredient in skincare products)
- Hormonal medication

Environmental toxins, chemicals or other physical agents

- Radiation exposure (from <u>X-rays</u>) or <u>chemotherapy</u>.
- Hot tubs, saunas or other heat sources that <u>raise your</u> <u>body temperature</u>.
- Mercury (found in certain types of fish).
- <u>Lead</u> (commonly found in paint and pipes in older homes).
- Toxic chemicals or heavy metals found in the workplace or manufacturing facilities.

Common birth defects teratogens cause

- Brain or spinal cord issues like <u>anencephaly</u>.
- Physical or structural malformation like small bones or missing body parts.
- <u>Cleft lip and palate</u>.
- Cognitive impairment or neurological issues.
- Cardiovascular issues or <u>heart conditions</u>.

Meta analysis of folic acid and NTD

	Folic a	cid	No folic	acid		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% Cl
Atlaw et al 2018	5	232	37	230	15.4%	0.11 [0.04, 0.30]	_
Bourouba et al 2018	2	15	46	118	11.0%	0.24 [0.05, 1.12]	
Filmawit et al 2018	0	24	60	156	5.2%	0.03 [0.00, 0.55]	←
Gedefawu et al 2016	6	26	105	202	15.4%	0.28 [0.11, 0.72]	
Nasri et al 2015	34	65	36	75	17.7%	1.19 [0.61, 2.31]	
Shabrawi et al 2015	14	46	48	134	17.2%	0.78 [0.38, 1.61]	
Wolderufael et at 2019	16	55	189	585	18.1%	0.86 [0.47, 1.58]	
Total (95% CI)		463		1500	100.0%	0.40 [0.19, 0.85]	•
Total events	77		521				
Heterogeneity: Tau ² = 0.71; Chi ² = 26.92, df = 6 (P = 0.0001); l ² = 78%			l); I² = 789	%			
Test for overall effect: Z = 2.38 (P = 0.02)							Favours [folic acid] Favours [no folic acid]

Department of Obstetrics and Gynecology

Dr Pratibha Kaphle

Most common birth defects

Birth defects	
Congenital heart defects	1 in every 110 births
Hypospadias	1 in every 200 births
Ventricular septal defect	1 in every 240 births
Clubfoot	1 in every 593 births
Down syndrome	1 in every 700 births
Pulmonary valve atresia and stenosis	1 in every 1,052 births
Cleft lip with cleft palate	1 in every 1,563 births
Cleft palate	1 in every 1,687 births
Atrioventricular septal defect	1 in every 1,859 births
Limb defect	1 in every 1,943 births

Burden and consequence in Nepal

- The prevalence of birth defects was found to be 5.8 per 1000 live births
- The commonly occurring birth defects were
 - cleft lip and palate 6.13%
 - anencephaly 3.95%
 - clubfeet 3.95%
 - eye abnormalities 3.95%
 - meningomyelocele 3.36%
 - cleft lip 2.77%

Selected Major Congenital Anomalies

External Internal 1. Neural Tube Defects 1. Congenital heart defects Hypoplastic left heart syndrome Anencephaly, Craniorachischisis, Iniencephaly, Encephalocele, Spina bifida Common truncus Microcephaly Interrupted aortic arch 2. 3. Microtia/Anotia Transposition of great arteries **Orofacial clefts Tetralogy of Fallot** 4. 5. Cleft lip only Pulmonary valve atresia Cleft palate only Cleft lip and palate Tricuspid valve atresia 6. Exomphalos (omphalocele) 7. 2. Esophageal Gastroschisis atresia/tracheoesophageal fistula 8. 3. Large intestinal atresia/stenosis 9. **Hypospadias**

- 4. Anorectal atresia/stenosis
- 5. Renal agenesis/hypoplasia

Chromosomal: Down Syndrome(Trisomy 21)

10. Reduction defects of upper and lower limbs

11. Talipes equinovarus/club foot

Selected external minor congenital anomalies

Absent nails Accessory tragus Anterior anus (ectopic anus) Auricular tag or pit Bifid uvula or cleft uvula Branchial tag or pit Camptodactyly Cup ear Cutis aplasia (if large, this is a major anomaly) Ear lobe crease Ear lobe notch Ear pit or tag Extra nipples (supernumerary nipples) Facial asymmetry Hydrocele Hypoplastic fingernails toenails Iris coloboma

Lop ear Micrognathia Natal teeth Plagiocephaly Polydactyly , involves hand and foot Preauricular appendage, tag or lobule Redundant neck folds Rocker-bottom feet Single crease, fifth finger Single transverse palmar crease Single umbilical artery Small penis (micropenis) Syndactyly involving second and third toes Tongue-tie (ankyloglossia) Umbilical hernia Undescended testicle Webbed neck (pterygium colli)

Anencephaly

Conjoined twins

Encephalocele

Cleft lip and palate

Clubfoot

Sacrococcygeal teratoma

Hydrocephalus

 U.S.G. - Obstetrics' SCAN

 Gravid Uteras containing a single fetus corresponding to 23 weeks 4 days (± 2 weeks) in cephalic presentation with normal cardina activity and fetal movements.

 Pail Parameters:

 gpt: 33 wk0 day
 FL: 25 wk 4 days

 AL: R4 hpd

 EFH: 670 Gms approx (±1556)

 Analide Fluid Volume : 5.6 cm in deepest vertical pouch (DVP).

 Parent:: Anterior upper uterine, shows normal thickness.

 Fdef Continue

 Buildel Shiteral lateral ventricles is seen with agenesis of corpus callosum and crowded posterior fast.

 Impression::
 23 weeks 4 days of live singleton pregnancy, cephalic presentation, anterior upper uterine placentation, adequate liquor WITH ANOMALLES IN FETAL BRAIN AS (XCRIBED ABOVE)

Gastroschisis

Oesophageal atresia

Both lungs	seen.	
to e/o pleu	iral or pericardial effusion.	
to e/o of S	OL in the thorax.	
BDOME	N	
tomach n	ot visualized.	
lowel appe	eared normal.	2
lo e/o of a	scites.	-
bdominal	wall intact.	-
UB toth kidne	vs appeared normal. No e/o any hydronephrosis.	
rinary bla	dder is well distended, appears normal.	
IMBS	the d fe annear normal for the period of gestation.]_ Dati
ong bones	s visualized & appear normal for the p	T au
MPRESS	ION:-	Sex
>	Single live intrauterine pregnancy with cephalic presentation of average	Atte
	gestational age of 30 weeks 1 day with poly hydraud	CIP
6	Stomach not visualized - D/D Esophageal arresta.	
5	No obvious congenital malformation seen at present seam	
	to octobe b	Pa
(1	imitation of level II scan: This scan reveals only the anatomical dephalus/hydronephrosis/limb	De
th	perefore, abnormalities with delayed even diaphragmatic hermations may need to do serial seen	
10	same & may be discovered later on. Therefore, it is always	
01	testion of anomalies).	
fo	or detection of anomalications	
	the first weight are subject to statistical variations.	1

Others

- Hydrops fetalis
- Omphalocele
- Meningomyelocele
- Congenital heart defects: Hypoplastic left heart
- Multicystic dysplastic kidney
- B/L Renal agenesis
- Limb defects: Aplasia, hypoplasia

Risk factors

Screening

- Birth defects are result of one or more genetic, infectious, nutritional or environmental factors
- Infections: Syphilis, Rubella
- Radiation exposure
- Alcohol, drug intake
- Nutritional : Iodine, Folate deficiency
- Obesity
- Maternal diabetes
- Age
- Genetic
 - Consanguinity

- Preconception screening
 - Carrier state
 - Family history
- During pregnancy
 - 1st trimester : NT/NB scan, dual/combined test, CVS
 - 2nd trimester: Anomaly scan, quadruple test, Amniocentesis, cfDNA analysis
- Neonatal screening

Conclusion

- Congenital anomalies can be single or multiple, major or minor defects.
- Early screening and diagnosis during pregnancy offers less psychological trauma to the patient for termination.
- Supplementation with prophylactic folic acid and identification and modification of possible risk factors may improve future pregnancy outcome.

Department of Radiology

Dr Sandhya Gautam

USG detection of congenital anomalies

- Low risk population: sensitivity- 14-85%, specificity-93-99%
- US (n=200,000 pregnancy): sensitivity-61.4 % at 18-22wks
- CNS anomalies: commonly detected with USG like anencephaly and hydrocephaly

Influencing factors

- Quality of the equipment
- Prevalence of the particular defect
- Number of studies done per pregnancy
- Type of defect
- Gestational age
- Maternal body habitus
- Amount of amniotic fluid
- Patient bladder preparation
- Examination protocol
- Obesity: Image quality deteriorates as BMI increases

Burden and consequence of birth defects in Nepal-prospective cohort study; SOURCE:BMC pediatrics

Name:	
-------	--

Age: years/ Date:

Technical conditions:

Placenta-

Presentation -

AFI:

Fetal Movement:

Fetal Parameters:

Measurements	cm	Gestational Age
BPD	cm	w d
HC	cm	w d
AC	cm	w d
FL	cm	w d
Average GA		w d
EFW	gms	
FHR	bpm, reg	gular
Cervical Length	cm	

Abnormal findings: No

Conclusion:

Dr. Radiologist NMC No. -

Prepared by:

Sonographic appearance of fetal anatomy N Ab N						
(N: Normal. Ab.: Abnormal, Nv.: Not						
visualized, Gray: Optional)						
Head		-				
•	Shape					
•	Cavum septum pellucidum					
•	Midline falx					
•	Lateral ventricle					
•	Cisterna Magna					
Face						
•	Upper lip					
•	Midline profile					
•	Orbits					
•	Nose					
•	Nostrils					
Neck						
Thoras	K	•				
•	Shape					
•	No masses					
Heart						
•	Heart Activity					
•	Size					
•	Cardiac Axis					
•	4- chamber view					
•	LVOT					
•	RVOT					
Abdon	ien	•	•			
•	Stomach					
•	Bowel					
•	Kidney					
•	UB					
•	Cord insertion					
•	Cord vessels					
Spine						
Limbs			•			
•	Right arm including hand					
•	Left arm including hand					
•	Right leg including foot	1	1			
•	Left leg including foot	1	1			

Hospital service

- Total number of anomaly scan done in NMCTH (Aug 2022-Jan2023): 456
- Anomaly scan at hospital= 6-8/day
- Most common: Neurological and GIT
- Less common: Musculoskeletal and other systemic anomalies

29 yrs female at 31weeks of pregnancy

Triple bubble sign

Gastroschisis

Department of Neonatology

Dr Subash Bhattarai

Epidemiology

- 1 in 33 infants/3.2 million disabilities per year/90% in L-MICC
- Death: 7% or 270 000 NND/year and 170 000 between 1 month -5 years
- Most common severe birth defects: heart and neural tube defects

• Genetic

- Nongenetic Teratogenic Etiology
 - Maternal DM
 - Drugs and Chemicals
 - Maternal Infection
- Multifactorial Disorders
 - Cleft lip, Palate
 - Congenital Heart Disease
 - Neural tube Defect

Common Major Birth Defect We Encountered

- Cleft lip with and without cleft palate/Cleft palate: 8
- Various CHDs: 7
 - HOCM: 2
 - TAPVC: 2
 - TOF: 2
 - Single Ventricle Physiology:1
- Down Syndrome: 6

- Genitourinary Abnormalities:
 4
- Congenital TORCH Infection : 3
- Gastroschisis: 3
- Tracheo- Esophageal Fistula: 3
- Congential Diapragmatic Hernia: 3
- Omphalocele: 1

Down Syndrome

- Most chromosomal disorder
- Associated with increased maternal age
- Down Syndrome Society, Nepal.
 - Equal rights and opportunities for people with Down Syndrome and other Intellectual Disabilities

Gastrochisis

Omphalocele

Conjoint Twin

Neural tube Defect

Genitourinary Abnormalities

Tracheoesophageal Fistula

Diaphragmatic Hernia

GI Anomalies

Nobel Diagnostic Center Pvt. Ltd. Nobel Medical College & Teaching Hospital (P.) Ltd.

A. Rectosigmoid tissue B. Descending colon (mid) C. Colostomy site

Specimen:

Ref By:

Clinical History:

Name: B/O Laxmi Shrestha

A: Received specimen labeled as "Rectosigmoid tissue" is single irregular tissue piece measuring 0.2X0.1 cm, pale white color. A/E in A B: Received specimen labeled as "Descending colon" is single irregular tissue piece, measuring 0.2X0.2 cm, pale white in color with areas of hemorrhages. A/E in B C: Received specimen labeled as "Colostomy site" is single irregular tissue piece measuring 0.3X0.2 cm, pale white in color. A/E in C

6D/M I.D No: 79088613

Histopathology report

Histo No. 310/023

Date: 2079/11/09

Microscopy:

- A. The section from rectosigmoid tissue shows hypertrophy of muscles and nerve bundles. There is complete absence of ganglionic cells in the section examined. Malignancy is not seen.
- B. The section from descending colon shows hypertrophy of muscles and nerve bundles. There is complete absence of ganglionic cells in the section examined. Malignancy is not seen.
- C. The section from Colostomy site shows tissue lined by columnar cells with basally placed nuclei. The submucosal layer shows chronic inflammatory infiltrates along with hemorrhages. Muscular layer is hypertrophied.

Impression: Consistent with Hirschsprung Disease.

Rah

Consultant Pathologist Dr Rashmita Bhandari M.D (pathology) NMC NO:18455

Cleft Lip and Palate

Congenital Heart Disease

Role of Paediatrician

- Antenatal Counselling
- Early Identification and Timely Referral
- Anticipation for need of Resuscitation
- Pregnancy History
- Thorough Head to toe examination
- Laboratory Studies

Low Resource Setting

- All Babies should be examined properly
- Thorough Examination (Head to Toe Examination including spine)
- Cyanosis
- Pulse Oximetry Monitoring
- All Orifices Should be checked

Department of Neurosurgery

Dr Prakash Kafle

CNS Birth Defects

- Presents at birth
- Mild to severe form
- Surgery
 - Address the symptoms
 - Correct the deformity
 - Maximize cognitive and motor functions
 - Prevent the development of neurological deficits

Most common & severe BD

Heart defects

Neural tube defects

<complex-block><complex-block>

Down syndrome

Commonly encountered-CNS- BD

- Neural Tube defects
 - Encephaloceles
 - Mylomeningocele
 - Lipomylomeningocele
 - Meningocele
 - Mylocele
 - Anencephaly and its spectrum
- Arachnoid Cysts
- Chiari Malformations
- Aqueduct Stenosis

- Sturge-Weber Syndrome
- Prosencephaly
- Microcephaly
- Megalencephaly
- Lissencephaly
- Cortical micro dysgenesis
- Agenesis of the corpus callosum
- Aplasia/Hypoplasia of Cerebellum
- Dandy walker malformation
- Joubert syndrome

Illustrative Images

Illustrative cases

F/U after 3 years

Cervico-doral MMC

Lumbar-MMC

Encephalocele

Frontonasal Encephalocele

A

Hydrocephalus and ETV

Illustrative ETV for Aqueduct Stenosis

https://youtu.be/3dHI-V51nDw (Dr. Prakash Kafle)

Glimpse of the recent publication(NINS)

ISSN: 2091-2331 (Print) 2091-234X (Online)

Journal of Nobel Medical College

Volume 10, Number 01, Issue 18, January-June 2021, 42-45

Original Article

Surgical Management and Early Outcome of Encephalocele

Prakash Kafle*¹, Mohan Rai Sharma², Sushil Krishna Shilpakar², Gopal Sedain², Amit Pradhanang², Ashish Jung Thapa¹, Ram Kumar Shrestha², Binod Rajbhandari², Babita Khanal

¹Department of Neurosurgery, Nobel Medical College Teaching Hospital, Biratnagar, Nepal ²Department of Neurosurgery, Tribhuvan University Teaching Hospital, Kathmandu, Nepal ³Department of Pediatric Medicine, Nobel Medical College Teaching Hospital, Biratnagar, Nepal

Article Received: 26th April, 2021; Accepted: 20th June, 2021; Published: 30th June, 2021

DOI: http://dx.doi.org/10.3126/ionmc.v10i1.37946

Abstract Background

There are limited studies pertaining to management of encephalocele in Nepal. So the present study seems justifiable to bridge the gap in the literature on encephalocele from Nepal on its clinical profile and early outcome. This study aims to characterize the clinical profile, management and outcome of largest series of encephalocele at tertiary care center in Nepal.

Materials and Methods

A retrospective analysis of encephalocele managed surgically at two tertiary care centers between 2015 and 2020 was performed.

Results

Total of 25 cases was surgically managed in the present study. The median age of study population was 2.5 months. There were 11 male and 14 female with male to female ratio of 1:1.26. Occipital encephalocele was the most common variant. Lump in the head (n=11) was the commonest clinical presentation followed by hyperteliorism (n=10). One patient presented with cleft lip and one had CSF discharge in a case of occipital encephalocele. Bony defect was the common radiological findings. Excision and repair was the most common mode of surgery leading to good outcome. Mortality rate was 4% with morbidity of 20%

Conclusion

Early surgical excision and tight dural closure with repair of bony defect is the standard treatment with relatively good outcome.

Keywords: Cerebrospinal Fluid, Encephalocele, Neural tube defect, Occipital Mass

Kafle P, Sharma MR, Shilpakar SK, Sedain G, Pradhanang A, Thapa AJ et.al., Surgical Management and Early Outcome of

Nepal Journals Online: www.nepjol.info	Journal of Nobel Medical Colleg
Official website: www.jonmc.info	Vol. 10, No. 1, Issue 18, January-June 202

Case Report

Prakash Kafle MS, MCh Neurosurgery Department of Neurosurgery, Nobel Medical College& Teaching Hospital, Kathmandu Nepal

Sushil Krishna Shilpakar MS Neurosurgery Professor of Neurosurgery,

HOD, Department of Neurosurgery, Institute of Medicine, TU Teaching Hospital, Kathmandu Nepal Mohan Rai Sharma MS Neurosurgery Professor of Neurosurgery Department of Neurosurgery Institute of Medicine, TU Teaching Hospital, Kathmandu Nepal Gopal Sedain

MS, MCh Neurosurgery

Assistant Professor of Neurosurgery Department of Neurosurgery, Institute of Medicine, TU Teaching Hospital, Kathmandu Nepal

Amit K Pradhanang MS MCh Neurosurgery

Assistant Professor of Neurosurgery Department of Neurosurgery Institute of Medicine, TU Teaching Hospital, Kathmandu Nepal

Binod Rai bhandari MBBS MS MCh Neurosurgery Resident Department of Neurosurgery, TUTH

Address for correspondence:

Dr.Gopal Sedain MS MCh Neurosurgery Assistant Professor of Neurosurgery IOM, TUTH, Kathmandu Nepal Email: neuron79@gmail.com

Date received: 16/3/18 Date accepted: 27/4/18

42

pubert syndrome is a rare autosomal recessive genetic neurodevelopmental disorderthat affects the area of J brain that controls balance and coordination."The common typical clinical manifestations are abnormal respiratory pattern (hyper apnea), occulomotor findings, low muscle tone (hypotonia), lack of muscle control (ataxia), developmental retardation with evidence of neuropathologic abnormalities of cerebellum and

brainstem.8Historically, it was first described by Dr Marie Joubert, French Neurologist in 1969. Shedescribed four siblings with cognitive impairment, ataxia, episodic tachypnea, eye movement abnormalities, and cerebellar vermian agenesis in a large French-Canadian family with consanguinity traced 11 generations to a common ancestor. This disorderis characterized by congenital malformation of the hindbrain and a broad spectrum of other phenotypic

Nepal Journal of Neuroscience 15:23-26, 2018

Joubert Syndrome: A Case

Joubert syndrome (JS) isa rare autosomal

recessive neurodevelopmental disorder involving

cerebellarvermis and brainstem,marked

byagenesis of cerebellar vermis, ataxia,

hypotonia,oculomotor apraxia, neonatal

breathingproblems and mental retardation.

Magnetic Resonance Imaging (MRI) revealsthe

characteristic Molar tooth sign of midbrain and

Key Words: Joubertsyndrome, hypotonia,

vermianagenesis, molar tooth sign, bat wing

Batwing appearance of rostral fourthventricle.

Report

appearance

Nepal Journal of Neuroscience, Volume 15, Number 1, 2018

Original Article Prakash Kafle, MBBS, MS

Kathmandu Nepal

Department of Neurosurgery, Institute a Medicine Tribhuvan University Teaching Hospita Kathmandu Nepal

Sushil K Shilpakar, MS Department of Neurosurgery, Institute of Medicine Tribhuvan University Teaching Hospital

Mohan R Sharma, MS Department of Neurosurgery, Institute of Medicine Tribhuvan University Teaching Hospital Kathmandu Nepa

Gonal Sedain, MS, MCh Department of Neurosurgery, Institute of Medicine Tribhuvan University Teaching Hospital Kathmandu Nenal

Amit B Pradhanang, MS, MCh Department of Neurosurgery, Institute of Medicine Tribhuyan University Teaching Hospital Kathmandu Nepal

Department of Neurosurgery, Institute of Medicine Tribhuvan University Teaching Hospital Kathmandu Nepal

Binod Rajbhandari, MBBS, MS Department of Neurosurgery, Institute of Medicine Tribhuvan University Teaching Hospital Kathmandu Nepal

Babita Khanal, MBBS, MD Department of Pediatric Medicine Nobel Medical College and Teaching Hospital Biratnagar, Nepal

Address for Correspondence: Gopal Sedain, MS, Mch Department of Neurosurgery, Institute of Medicine Tribhuvan University Teaching Hospital Kathmandu Nepal Email: newron79@gmail.com Received, 12 February, 2017

Accepted, 28 February, 2017

2

Nepal Journal of Neuroscience 14:2-6, 2017 Spinal Dysraphism: Common

Entity in Pediatric Neurosurgery

Introduction: Neural tube defects are among the most common congenital malformations and a major cause of health problems in surviving children, especially in developing countries. Although the incidence of spinal dysraphism has significantly decreased over the last few decades, all over the world: however, the incidence is much higher in developing countries with poor socioeconomic status. The social and economic impact of this disease is not well documented; however, up to 75% of adult survivors may be dependent on parents or other care providers.

Aims and Objectives: The aim of this study is to review the demographic profile, clinical pretentions, surgical management and short term outcome of patients presenting with spinal dysraphism

Methodology: This is a prospective observational study of cases of spinal dysraphism managed surgically over the period of 2 years from March 2014 to February 2016 in Department of Neurosurgery at Tribhuvan University Teaching Hospital (TUTH), Kathmandu Nepal.

Results: Out of total 97 cases, there was male preponderance. In about 40% of population there was no history of proper ANC visit and most of them were from low economic status. Lump on the back was the commonest clinical findings. Lumbar Myelomeningocele was the commonest anatomical location of dysraphism. More than one third of patients needed CSF diversion postoperatively.

Conclusion: Myelomeningocele is a common NTDs. Open dysraphism may not always present as a lump. Delay in seeking medical attention may be due to illiteracy. None of the mother had taken folic acid prior to conception

Key Words: hydrocephalus, myelomeningocele, spinal dysraphism

The term Spina dysraphism refers to a group of congenital anomalies of spine in which midline structure fails to fuse.8 They are commonly known as neural tube defects (NTDs). It is among the most

common congenital malformations and a major cause of health problems in surviving children 7 Among them myelomeningocele represents the most serious form of dysraphism, a so called apert or open form involving the

Ram K Shrestha, MS, MCh

Summary

- CNS –BD is usually Syndromic
- Multidisciplinary team is a must
- Most NTD with Neurological impairment don't return to Normal
- No metanalyses on genetic studies
- Studies are required to establish the genetic and environmental risk factor identifications
- Prevention remains the best strategy in the management of NTDs

